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Plan

1. Model: diffusion of interacting particles in 
disordered one-dimensional system

2. Motion of non-interacting particles in disorder

3. Motion on interacting particles in disorder



Disorder
• Disorder underlies many interesting phenomena

- Localization (Anderson 58) 

- Glassiness & slow relaxation (Sherrington & Kirkpatrick 75, Parisi 79)

- Frustration (Ramirez 94)

• Influence of disorder: 

- Well understood for non-interacting particles 

- Open question for interacting particles (lee & ramakrishnan 85) 

• De-localization of two interacting particles (Shepelyansky 93)

Interplay between disorder and particle interaction
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Model System

• Infinite one-dimensional lattice

• Identical particles with concentration 

• Dynamics: particles move left and right with two rules:

(i) Disorder: random, uncorrelated bias at each site

(ii) Interaction: via exclusion, one particle per site

c

p+ =

{
1
2 + ε with probability = 1

2
1
2 − ε with probability = 1

2

Minimal model with disorder and interaction



Particle Dynamics

• Pick a particle out of N randomly

• Say particle is located at site i.
(i) Disorder: site dependent, governs motion

➡ With probability p+(i) move to the right by one site
➡ With probability p_(i)=1-p+(i) move to the left one site

(ii)Interaction: via exclusion
➡ Accept the move if new site is vacant
➡ Reject the move if new site is occupied

• Augment time by 1/N

Monte Carlo Simulation Procedure

p+(i)p−(i)



• Two parameters: concentration   , disorder strength 

• Generalizes two “seminal” diffusion processes: 

1. Sinai Diffusion: no interaction,        

2. Single-File Diffusion: no disorder,

(i) Disorder is small 

(ii)Concentration is finite

Parameters

ε→ 0

c→ 0

c ε

Sinai 82 

Levitt 73 

c =
1
2

ε! 1



One Question

• Displacement of a particle

• No overall bias, average displacement vanishes

 

• How does the variance grow with time?

〈x〉 = 0

σ2 = 〈x2〉 = ?

x



2. Non-interacting Particles



• Particle is trapped in a stochastic potential well

• Potential well is a random walk

• Escape time is exponential with depth of well

• Logarithmically slow displacement

Non-interacting particles 

x

U

U ∼ ε
√

x

t ∼ eU ∼ eε
√

x

x ∼ ε−2(ln t)2 Sinai 83

U(x) =
x∑

i=1

[p+(i)− p−(i)]



• Scaled displacement

• Distribution is exactly known

• Non-gaussian statistics

Distribution of Displacements 

Golosov 84
Kesten 86 
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• Ignore biases

• In each step

• In    steps: average and variance are additive

• Purely diffusive motion

Early time: random walk 

〈x〉 = 0
〈x2〉 = 1

〈x〉 = 0
〈x2〉 = t

ε = 0

t

σ = t1/2



• When disorder is small, there are two time regimes

• Early times: disorder is irrelevant, simple diffusion

• Late times: disorder is relevant, particle trapped

• Crossover obtained by matching two behaviors

Two time regimes

Without particle interactions: 
disorder slows particles down

σ ∼
{

t1/2 t" ε−4,

ε−2(ln t)2 t# ε−4.
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Monotonic dependence on disorder strength:
stronger disorder implies smaller displacement

Numerical Simulations



3. Interacting Particles



• Disorder is irrelevant, problem reduces to      
single file diffusion = simple exclusion process

• Particles motion is sub-diffusive

• Observed in colloidal rings and biological channels

Early times

Exclusion hinders motion of particles

σ ∼ t1/4

Harris 63
Levitt 73
Alexander 78
van beijeren 83

Bechinger 00
Lin 02

with video microscopy, the trajectories of
individual particles can be followed over long
periods of time. We unambiguously observed
the non-Fickian behavior of SFD and confirm
the theoretically predicted Gaussian distribu-
tion of particle displacements.

The sample cell was composed of two op-
tical flats separated by an O ring of 0.5-mm
thickness. The bottom plate was first coated
with a thin layer of poly(methyl methacrylate)
to prevent colloidal particles from sticking to
the glass surface. On top of this film, a 5-!m-

thick layer of a transparent photoresist was
deposited. Afterward, a set of concentric circu-
lar channels (7 !m in width and 33 to 1608 !m
in diameter) was etched into the photoresist by
means of photolithography (Fig. 1A). The dis-
tance between adjacent channels, 63 !m, is
much larger than the mean particle separation
(11 !m), which rules out correlation between
particles in neighboring channels.

We used an aqueous suspension of para-
magnetic polystyrene colloids with a diameter
of 3.6 !m (M-350 Dyno AS, Lillestroem, Nor-

way). The particles were doped with Fe2O3

clusters and are paramagnetic. Thus, when an
external magnetic field is applied perpendicular
to the sample plane, a magnetic dipole moment
M is induced in the colloids (which is propor-
tional to the weak field strengths B that we
used) that gives rise to a repulsive pair interac-
tion potential of the form V(r) " (!0/
4#)M2(B)r$3, where r is the particle distance
and !0 is the vacuum permeability. In order to
characterize the interaction strength between
particles, we introduce the quantity % " &(!0/
4#)'eff

2B2R$3, which is the mean interaction
energy normalized by the thermal energy 1/& "
kBT, where kB is the Boltzmann constant and T
is the temperature. Here, R is the mean particle
distance, and 'eff is the magnetic susceptibility
of the particles, which was determined to be
2.2 ( 10$12 A m2 T$1 (20). The particle-wall
interaction can be considered as a hard sphere-
wall interaction to a good approximation.

A typical real-space configuration of the
particles at % " 4 is shown in Fig. 1B. Each
channel appears as two closely spaced concen-
tric rings because of the diffraction of the light
at its walls into the photoresist. The particles are
the dark objects within the channels. Most of
the particles are trapped in the channels, where-
as only a few reside on the elevated areas and
do not influence the diffusion behavior of par-
ticles in the channels. The channels are narrow
enough to meet the SF condition and prohibit
the mutual passage of particles.

In Fig. 2A, we plotted typical trajectories
of eight neighboring particles obtained at % "
4 from the largest channel in Fig. 1B. The
particle position x corresponds to their angu-
lar coordinate multiplied by the channel ra-
dius. As can be seen, the trajectories never
cross during the measuring time, which indi-
cates that the SF condition is satisfied. The
correlation of particle positions for long pe-
riods of time, as a characteristic of SFD, can
also be seen from Fig. 2A.

The results of MSD in a log-log plot for five
different magnetic field strengths (% " 0.66,
1.10, 2.34, 4.03, and 7.42) are shown in Fig.
2B. For the calculation of MSD, we averaged
over both the time t and all of the particles in the
channel, or )*x2+ " ,i)[xi(t - t.) $ xi(t.)]

2+t./N,
where N is the total number of particles and i is
the particle index. The solid lines in Fig. 2B
correspond to the best fits according to Eq. 1
with the mobility F as the only adjustable pa-
rameter. The predicted t1/2 behavior was seen
over more than two decades of time. The small
deviations from the solid lines at small time
scales correspond to the crossover between the
long-time and short-time diffusion of the parti-
cles. The crossover time tc (arrows in Fig. 2B)
is significantly shifted to larger values when the
magnetic dipole repulsion between the particles
decreases.

We also calculated the distribution func-
tion of displacements p(x, t), which is defined

Fig. 1. (A) Scanning
electron microscope im-
age of the 1D trenches
fabricated on the pho-
toresist polymer film
by photolithography. (B)
Optical microscope im-
age of three concentric
circular channels with
colloidal particles con-
fined in them (the small
black objects inside the
channels). After the cell
was assembled, the col-
loidal particles sedimented to the bottom plate under the action of gravitation and were trapped in the
microchannels (promoted by slightly tilting the substrate). With a particle density of 1.20 g cm$3, the
gravitation potential well of the 5-!m-deep channel is/400kBT in depth. After most of the particles were
trapped in the channels, the sample was carefully adjusted to horizontal before the experiments. The
dynamics of colloidal particles was monitored with a home-built inverted transmission optical microscope
system that was connected to a charge-coupled device camera and a computer.

Fig. 2. (A) Typical tra-
jectories for eight
neighboring particles
in the largest channel
in Fig. 1A. The instan-
taneous particle coor-
dinates were extract-
ed from digitized pic-
tures with an image-
processing algorithm
and saved in a com-
puter for later analy-
sis. From those data,
we obtained the parti-
cle trajectories. The system was equilibrated for at least 4 hours before each measurement. To
obtain the long-time behavior, we recorded the coordinates of colloidal particles for/8 hours, with
a time interval of /8 s between two adjacent pictures. (B) Log-log plot of the measured particle
MSDs versus the observation time for five different particle interaction strengths %: 0.66, open
circles; 1.1, solid circles; 2.34, open squares; 4.03, solid triangles; and 7.42, open triangles. The data
points have been shifted upward by ln 2 for clarity, and the solid lines are best fit with Eq. 1 with
the mobility F as an adjustable parameter.

Fig. 3. (A) The particle
displacement distribu-
tion function p(x, t)
for % " 4 at different
times t: 77 s, circles;
385 s, triangles; 770 s,
squares; and 3850 s,
inverted triangles. (B)
The distribution func-
tion p(x, t) of (A) re-
plotted by scaling p(x,
t) 3 t 1/4p(x, t), x 3
x/t1/4. The solid curve
is a Gaussian fit with
Eq. 2, with the fitting parameter F " 0.14 !m/s1/2.
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with video microscopy, the trajectories of
individual particles can be followed over long
periods of time. We unambiguously observed
the non-Fickian behavior of SFD and confirm
the theoretically predicted Gaussian distribu-
tion of particle displacements.

The sample cell was composed of two op-
tical flats separated by an O ring of 0.5-mm
thickness. The bottom plate was first coated
with a thin layer of poly(methyl methacrylate)
to prevent colloidal particles from sticking to
the glass surface. On top of this film, a 5-!m-

thick layer of a transparent photoresist was
deposited. Afterward, a set of concentric circu-
lar channels (7 !m in width and 33 to 1608 !m
in diameter) was etched into the photoresist by
means of photolithography (Fig. 1A). The dis-
tance between adjacent channels, 63 !m, is
much larger than the mean particle separation
(11 !m), which rules out correlation between
particles in neighboring channels.

We used an aqueous suspension of para-
magnetic polystyrene colloids with a diameter
of 3.6 !m (M-350 Dyno AS, Lillestroem, Nor-

way). The particles were doped with Fe2O3

clusters and are paramagnetic. Thus, when an
external magnetic field is applied perpendicular
to the sample plane, a magnetic dipole moment
M is induced in the colloids (which is propor-
tional to the weak field strengths B that we
used) that gives rise to a repulsive pair interac-
tion potential of the form V(r) " (!0/
4#)M2(B)r$3, where r is the particle distance
and !0 is the vacuum permeability. In order to
characterize the interaction strength between
particles, we introduce the quantity % " &(!0/
4#)'eff

2B2R$3, which is the mean interaction
energy normalized by the thermal energy 1/& "
kBT, where kB is the Boltzmann constant and T
is the temperature. Here, R is the mean particle
distance, and 'eff is the magnetic susceptibility
of the particles, which was determined to be
2.2 ( 10$12 A m2 T$1 (20). The particle-wall
interaction can be considered as a hard sphere-
wall interaction to a good approximation.

A typical real-space configuration of the
particles at % " 4 is shown in Fig. 1B. Each
channel appears as two closely spaced concen-
tric rings because of the diffraction of the light
at its walls into the photoresist. The particles are
the dark objects within the channels. Most of
the particles are trapped in the channels, where-
as only a few reside on the elevated areas and
do not influence the diffusion behavior of par-
ticles in the channels. The channels are narrow
enough to meet the SF condition and prohibit
the mutual passage of particles.

In Fig. 2A, we plotted typical trajectories
of eight neighboring particles obtained at % "
4 from the largest channel in Fig. 1B. The
particle position x corresponds to their angu-
lar coordinate multiplied by the channel ra-
dius. As can be seen, the trajectories never
cross during the measuring time, which indi-
cates that the SF condition is satisfied. The
correlation of particle positions for long pe-
riods of time, as a characteristic of SFD, can
also be seen from Fig. 2A.

The results of MSD in a log-log plot for five
different magnetic field strengths (% " 0.66,
1.10, 2.34, 4.03, and 7.42) are shown in Fig.
2B. For the calculation of MSD, we averaged
over both the time t and all of the particles in the
channel, or )*x2+ " ,i)[xi(t - t.) $ xi(t.)]

2+t./N,
where N is the total number of particles and i is
the particle index. The solid lines in Fig. 2B
correspond to the best fits according to Eq. 1
with the mobility F as the only adjustable pa-
rameter. The predicted t1/2 behavior was seen
over more than two decades of time. The small
deviations from the solid lines at small time
scales correspond to the crossover between the
long-time and short-time diffusion of the parti-
cles. The crossover time tc (arrows in Fig. 2B)
is significantly shifted to larger values when the
magnetic dipole repulsion between the particles
decreases.

We also calculated the distribution func-
tion of displacements p(x, t), which is defined

Fig. 1. (A) Scanning
electron microscope im-
age of the 1D trenches
fabricated on the pho-
toresist polymer film
by photolithography. (B)
Optical microscope im-
age of three concentric
circular channels with
colloidal particles con-
fined in them (the small
black objects inside the
channels). After the cell
was assembled, the col-
loidal particles sedimented to the bottom plate under the action of gravitation and were trapped in the
microchannels (promoted by slightly tilting the substrate). With a particle density of 1.20 g cm$3, the
gravitation potential well of the 5-!m-deep channel is/400kBT in depth. After most of the particles were
trapped in the channels, the sample was carefully adjusted to horizontal before the experiments. The
dynamics of colloidal particles was monitored with a home-built inverted transmission optical microscope
system that was connected to a charge-coupled device camera and a computer.

Fig. 2. (A) Typical tra-
jectories for eight
neighboring particles
in the largest channel
in Fig. 1A. The instan-
taneous particle coor-
dinates were extract-
ed from digitized pic-
tures with an image-
processing algorithm
and saved in a com-
puter for later analy-
sis. From those data,
we obtained the parti-
cle trajectories. The system was equilibrated for at least 4 hours before each measurement. To
obtain the long-time behavior, we recorded the coordinates of colloidal particles for/8 hours, with
a time interval of /8 s between two adjacent pictures. (B) Log-log plot of the measured particle
MSDs versus the observation time for five different particle interaction strengths %: 0.66, open
circles; 1.1, solid circles; 2.34, open squares; 4.03, solid triangles; and 7.42, open triangles. The data
points have been shifted upward by ln 2 for clarity, and the solid lines are best fit with Eq. 1 with
the mobility F as an adjustable parameter.

Fig. 3. (A) The particle
displacement distribu-
tion function p(x, t)
for % " 4 at different
times t: 77 s, circles;
385 s, triangles; 770 s,
squares; and 3850 s,
inverted triangles. (B)
The distribution func-
tion p(x, t) of (A) re-
plotted by scaling p(x,
t) 3 t 1/4p(x, t), x 3
x/t1/4. The solid curve
is a Gaussian fit with
Eq. 2, with the fitting parameter F " 0.14 !m/s1/2.
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Exchange identities when two particles cross!

interacting particles noninteracting particles

t1/4 t1/2



• Dense limit

• Particles move by exchanging position with vacancies

• Excess vacancies 

• Total number of vacancies over the diffusive length  

• Displacement 

Heuristic Derivation

x = N+ −N−

c→ 1

|N+ −N−| ∼ N1/2

N ∼ (1− c)t1/2

x ∼ t1/4

t
N+ = 2
N− = 0

t1/2



Random Velocity Field

Magnitude of velocity diminishes with length
Local biases lead to directed motion

bouchaud & georges 90



• Local biases exist, cause directed motion

• Particle visits                       distinct sites in time 

• Disorder is random, so there is a diffusive excess

•  Local drift velocity is proportional to excess

• The displacement is super-diffusive

Intermediate times

σ = n+ + n− t

v ∼ ε ∆/σ ⇒ v ∼ ε σ−1/2

∆ = |n+ − n−| ∼ σ1/2

σ ∼ v t ∼ ε tσ−1/2 ⇒ σ ∼ (ε t)2/3

With particle interactions: 
disorder speeds particles up!



• Interaction is irrelevant, problem reduces to sinai 
diffusion

• The exponential escape time is dominant 

• Imagine particles lines up to exit the cage

 

• Particles motion remains logarithmically slow

Late times

t ∼ eU replaced by t ∼ xeU

σ ∼ ε−2(ln t)2

Ultimate asymptotic behavior: 
particles motion is logarithmic slow



• Early times: interaction is relevant, sub-diffusion

• Intermediate times: disorder & interaction both 
relevant, super-diffusion 

• Late times: disorder relevant, caging

Three time regimes

Small disorder:
mobility is enhanced over a long period 

σ ∼






t1/4 t" ε−8/5,

(ε t)2/3 ε−8/5 " t" ε−4,

ε−2(ln t)2 t# ε−4.



Three time regimes

σ

t
ε−8/5 ε−4

ε−2(ln t)2

(ε t)2/3 t1/4

t1/2

interaction
no disorder

interaction 
+ disorder

no interaction
disorder

ε−2

ε−2/5



• Of course, the hopping time is of order one

• The escape time is appreciable when 

• The cage is relevant only at late times

Can we ignore the cage at 
intermediate times?

t ∼ exp(U) ⇒ U # 1 ⇒ ε
√

x# 1

x! ε−2

Yes, we can (ignore the cage)!



• Therefore, super-diffusive transport must be 
relevant for noninteracting particles!

• However, the diffusive transport overwhelms the 
super-diffusive transport

Heuristic argument does 
not utilize particle interactions!

t1/2 ! (ε t)2/3 for t" ε−4

Noninteracting particles: 
Small convective correction exists, but is irrelevant



100 101 102 103 104 105 106 107

t
100
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103

σ

slope=2/3
weak disorder
no disorder

Early and intermediate time behavior 
for a weak disorder

Qualitative and quantitative agreement 
with scaling theory

N = 4× 105

Monte Carlo
number of particles
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t ε8/5
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 ε
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5

ε=0.003
ε=0.01

Early and intermediate time behavior 
for two different weak disorders

Universal scaling function for the displacement
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Late time behavior for 
a moderate disorder

Suggests that interaction becomes irrelevant

ε = 0.1
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Late time behavior

Further evidence that disorder becomes irrelevant

σNI

σI

ε4 t

Ratio of rms displacement in 
NonInteracting (NI) and Interacting (I) particles
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1. Mobility is enhanced at all disorder strengths
2. Displacement is not monotonic with disorder
3. Eventually, no-disorder catches up
4. But why is the crossover time so large?

Early and intermediate time behavior 
for moderate disorders



Giant crossover time

• Compare ultimate asymptotic behaviors with interaction

• Without disorder 

• With small disorder

• The crossover time is astronomical

σ ∼ t1/4

σ ∼ ε−2(ln t)2

t ∼ ε−8

In practice, small disorder generates stronger transport in 
an interacting particle system



Generalizations

✓Different concentrations

✓Disorder with variable strengths

• Synchronous dynamics = parallel updates

Qualitative behavior appears to be robust



Summary

• Without interactions: disorder slows particles down

• With interactions: disorder speeds particles up, at least 
for a very long time

- Early times: sub-diffusive displacements

- Intermediate times: super-diffusive displacement

- Late times: logarithmically slow displacement

• Intricate interplay between interaction and disorder



Outlook
• Beyond scaling theory: a mathematical theory

• Distribution of displacements

• Different types of disorder

• Self-averaging?

• Experiments: colloids, microfluids, granular, 
biological channels

• Disorder as a mechanism to control transport 
in matter



• Particular state of the system

• Probabilistic description

• Time evolution

• Evolution operator

• Formal solution

Formally

|ψ〉 = | · · · 001101001 · · · 〉

L =
∑

i

[
li a†i−1ai + ri a†i+1ai

] ai|1〉 = |0〉
a†i |0〉 = |1〉

|φ(t)〉 = eLt |φ(0)〉

∂t|φ〉 = L |φ〉

|φ(t)〉 =
∑

ψ

P (ψ, t)|ψ〉



Experiments: enhanced diffusion
G. Coupier et al.

Fig. 1: Experimental configurations. Wigner islands: (a) N = 19, (b) N = 18; circular bald pipe (c) N = 12. In inset, the
corresponding balls trajectories at the same effective temperature.

fluctuations in the channel modulation, originating in the
small movements of trapped vortices for instance, could
subtly influence the resulting flow of the mobile vortices.
In this letter we show that these fluctuations could

induce an important enhancement of the vortices diffusion,
one order of magnitude higher than in the case of a bald
channel. This enhancement is shown on a macroscopic
experimental device, which allows to determine directly
the trajectories of the particles. The diffusion of a circular
file of particles has been studied for two different channels
guiding the particles: a fluctuating modulated channel
created by other particles, and a channel without any
modulation, hereafter called bald pipe, that was already
considered in ref. [25].

Experimental set-up. – In these experiments, milli-
metric stainless-steel balls are located on the bottom elec-
trode (silicon wafer) of a horizontal plane condenser, while
a metallic frame intercalated between the two electrodes
and in contact with the bottom electrode confines them.
Depending on the experiments, this frame is a disk whose
external diameter is 10mm or a circular bald pipe, its
external diameter of 10mm and its width of 2mm prevent-
ing any crossing between particles (fig. 1). When a voltage
V = 1kV is applied between the two electrodes, the balls
become charged, repel each other and spread through-
out the whole available space. We have shown that their
electrostatic interaction is described by a modified Bessel
function of the second kind K0 with a screening length
λ= 0.48mm. Notice that this interaction is exactly similar
to the inter-vortex interaction in superconductors [26,27].
To introduce thermal noise, the whole cell is fixed on loud-
speakers supplied by a white noise voltage. We have thor-
oughly checked that the resulting shaking of the balls,
due to friction with the bottom electrode, fulfil the prop-
erties one can expect for a thermal shaking. First, even
though all the balls lie on the same solid substrate, their
movement is spatially non-correlated, which might be due
to inhomogeneities on the wafer at a microscopic level.

Secondly, the individual trajectory of a single ball which
is free or trapped in a parabolic well can be described
through Langevin formalism [25]. Stationary states are
reached in a few tenth of second. They are characterized by
an effective temperature directly controlled by the shaking
amplitude: the energy distribution is given by Boltzmann
statistics. This was proved on confined small islands of
balls, that can be seen as two-level systems when consid-
ering their two first equilibrium configurations, character-
ized by concentric shells of varying number of balls [28].
This effective temperature was calibrated and is measured
in situ.
Throughout the experiments, images of the particles

are recorded in real time using a camera. The interval
between two successive snapshots is 150ms and five series
of 10000 images have been recorded for each experiment.
With this choice, relevant statistics for the long-time
behaviour of the displacements are obtained, the length
of one experiment remaining reasonable since the effective
thermal bath is characterized by a relaxation time of about
100ms [25]. The diffusion of the particles is measured
through the evolution with time of their mean-square
displacements (m.s.d.) ∆θ2(t) given by

∆θ2(t) = 〈
[
θ(t+ t0)− θ(t0)−〈θ(t+ t0)− θ(t0)〉

]2〉, (1)

where the orthoradial coordinate θ (in radians) is the
cumulated angle, and not the modulo 2π angle in order
to explore an unbounded motion. The brackets 〈 〉 denote
ensemble averaging over the initial time t0 and a set of
statistically independent trajectories.

Observations and discussion. – In order to observe
a quasi-1D movement in a fluctuating modulated poten-
tial, we first considered the outer circular shell of a Wigner
island, composed of 19 interacting particles confined
in a circular disk, for which the ground configuration
corresponds to self-organized pattern constituted of three
concentric shells filled by 1, 6 and 12 balls. This configura-
tion is denoted (1-6-12) hereafter (fig. 1) [27]. To observe

60001-p2

SFD enhancement in a fluctuating modulated quasi-1D channel
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Fig. 2: Evolution with time of the orthoradial coordinate θ of
a ball in: a bald circular pipe (i), a Wigner island N = 19 outer
shell (two different balls) (ii), a Wigner island N = 19 inner
shell (iii).

well-defined shells, the experiments have been performed
at an effective temperature equal to roughly a few tens
of the inter-ball interaction; for this temperature range,
the balls seldom jump from one shell to another [28]. The
effective thermal agitation mainly induces orthoradial
motion while the radial displacements are reduced as can
be seen on the balls trajectories presented in the insets of
fig. 1 [28].
This quasi-1D orthoradial displacement is the first step

towards complete “melting” of such clusters, which is
achieved when thermal fluctuations also break the radial
order. For this reason, the influence of the temperature
and the geometry on the orthoradial movement has been
previously extensively studied (see, e.g., refs. [28–31] and
references therein). However, since the relevant parameter
in that case is the orthoradial order, which can be appre-
ciated by short-time measurements, long-time behaviour
in the diffusion process has not been investigated in such
systems. In particular, even when evolutions with time
are reported, single file behaviours are not studied [32,33].
Let us also indicate that in our system, the orthoradial
displacements grow monotonously with temperature [28],
unlike what is observed in colloidal systems, where an
orthoradial stabilization can be obtained when the radial
fluctuations increase [32,33]. As shown by Schweigert
et al., this phenomenon is due to the presence of a
hard-wall confining potential [34], which is not the case
here [26].
The shell stability offers the opportunity to perform

long-time orthoradial diffusion experiments. In the outer
shell, the relative mean orthoradial displacements of two
neighbouring balls are about 0.07 radian (respectively
0.15 in the inner shell), much smaller than the angular
distance 2π/12 (respectively 2π/6) between them. Thus,
each shell can be considered as a periodic ring. This ring
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Fig. 3: Comparison between the mean-square orthoradial
displacements ∆θ2(t) of a ball moving in the Wigner island
N = 19 outer shell and in a bald circular pipe (log-log scale).

presents global angular movements which are coherently
followed by the balls as shown in fig. 2 (ii), where the
trajectories of two different balls of the outer shell are
reported. Their global orthoradial movements are similar
but their trajectories present differences of low relative
amplitude at small time-scale. Therefore, the outer twelve-
ball shell is a well-adapted realization of a periodic system
of particles moving in a fluctuating modulated potential
due to the inner shell. Along the orthoradial direction,
the angular displacements of the balls have a Gaussian
distribution. The evolution with time of the corresponding
m.s.d. ∆θ2(t) is presented in fig. 3 for 150ms ! t! 150 s.
Within this time range, this angular m.s.d. increases with
time with a tα-dependency where α is close to 0.6. Note
that this power law description is only a useful tool to
qualify the general trend of the curve, without possible
extrapolation on the behaviour at longer times.
We have compared these results with those obtained

for the same twelve balls moving in a circular bald pipe,
the effective temperature and the inter-ball interaction
remaining the same (fig. 1). We emphasize that, even if
the movement of the balls is not strictly 1D, no coupling
effects resulting from the circular channel geometry were
observed. For instance, the orthoradial movement of a
single ball in this circular gutter is a 1D free diffusion well
described by the Langevin equation [25]. As in the Wigner
island case, the distribution of the angular movement of
the balls is Gaussian. However, long-time behaviour of the
angular m.s.d. in this bald pipe differs dramatically from
the previous case, since the amplitude of the diffusion is
much smaller; 10 times smaller for instance for the last
decade. This important difference in the mobilities can be
also directly observed on the various trajectories presented
in fig. 2 (i-ii). Moreover, the role of the periodicity is
confirmed when considering the diffusion in the inner shell,
which is around seven times higher than in the outer shell,
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Qualitatively similar behavior 


